Abstract
Land plants regulate their photosynthesis and water transpiration by exchanging gases (CO2 and H2Ovapour) with the atmosphere. These exchanges take place through microscopic valves, called stomata, on the leaf surface. The opening of the stomata is regulated by two guard cells that actively and reversibly modify their turgor pressure to modulate the opening of the stomatal pores. Stomatal function depends on the regulation of the ion transport capacities of cell membranes as well as on the modification of the subcellular organisation of guard cells. Here we report how the vacuolar and cytosolic compartments of guard cells quantitatively participate in stomatal opening. We used a genetically encoded biosensor to visualise changes in ionic concentration during stomatal opening. The 3D reconstruction of living guard cells shows that the vacuole is the responsible for the change in guard cell volume required for stomatal opening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.