Abstract

Vaccinia virus complement control protein (VCP) possesses the ability to inhibit both classical and alternative pathways of complement activation, as well as bind to heparin or heparan sulfate proteoglycans, making it a unique multifunctional protein with therapeutic potential. Recently, the structure of the complete molecule of VCP was determined by X-ray crystallography. Two or three VCP molecules were packed within the unit cells of both crystal forms. Using gel filtration, VCP has now been shown to exist as a monomer in solution. To test the stability of this molecule, VCP was studied by nuclear magnetic resonance (NMR) over a range of temperatures and by differential scanning calorimetry (DSC). It was also subjected to adverse physical conditions, including, freeze–thawing, changes in pH, changes in temperature, and storage at room temperature. VCP melts fully reversibly, and it maintained its 3-D structure and the ability to inhibit serum-induced hemolysis of sheep red blood cells after exposure to many extreme conditions. The robustness of VCP may be rationalized in terms of its architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.