Abstract

It took a global pandemic to accomplish one of the most significant advances in the history of vaccinology: widespread, commercial deployment of vaccines derived from nucleic acids. As of this writing, hundreds of millions of people have been vaccinated against SARS-CoV-2, the virus that causes COVID-19. And most of those shots have been the Pfizer-BioNTech and Moderna offerings, which are both of a type known as an mRNA (messenger RNA) vaccine. DNA vaccines come with a major challenge, however. When administered with an ordinary hypodermic needle, they've conferred only weak immunity, at best, in many human studies. But if a small, ambitious Pennsylvania company backed by the U.S. Department of Defense succeeds in its clinical trials, DNA vaccines-enabled by a new delivery technology-could soon join the fight against COVID-19, and a host of other viral illnesses.The company, Inovio Pharmaceuticals, is using a technique known as electroporation, in which an electrical pulse applied to the skin briefly opens channels in cells to allow the vaccine to enter. After a standard vaccine injection, Inovio's electroporation device, which looks like an electric toothbrush, is held against the skin. At the press of a button, a weak electric field pulses into the arm, opening channels into the cells. The tool gives DNA vaccines the boost they need to work in humans-or so the company says. It's an engineering solution to a biological problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call