Abstract
There is no licenced vaccine against any human parasitic disease and Plasmodium falciparum malaria, a major cause of infectious mortality, presents a great challenge to vaccine developers. This has led to the assessment of a wide variety of approaches to malaria vaccine design and development, assisted by the availability of a safe challenge model for small-scale efficacy testing of vaccine candidates. Malaria vaccine development has been at the forefront of assessing many new vaccine technologies including novel adjuvants, vectored prime-boost regimes and the concept of community vaccination to block malaria transmission. Most current vaccine candidates target a single stage of the parasite's life cycle and vaccines against the early pre-erythrocytic stages have shown most success. A protein in adjuvant vaccine, working through antibodies against sporozoites, and viral vector vaccines targeting the intracellular liver-stage parasite with cellular immunity show partial efficacy in humans, and the anti-sporozoite vaccine is currently in phase III trials. However, a more effective malaria vaccine suitable for widespread cost-effective deployment is likely to require a multi-component vaccine targeting more than one life cycle stage. The most attractive near-term approach to develop such a product is to combine existing partially effective pre-erythrocytic vaccine candidates.
Highlights
There is no licenced vaccine against any human parasitic disease and Plasmodium falciparum malaria, a major cause of infectious mortality, presents a great challenge to vaccine developers
The continuing unacceptable impact of malaria morbidity and mortality, amounting to over 800 000 deaths and some 250 million clinical episodes annually [5] has led to a variety of sustained efforts to develop effective malaria vaccine candidates
Extensive immunoepidemiological studies have provided limited insight into what the best antigens to include in a vaccine might be: natural immunity predominantly targets a wide variety of blood-stage antigens and no one antigen appears to be especially important in providing protection [9]
Summary
Malaria is the most important parasitic disease of humans and efforts to develop effective vaccines span more than six decades. In the last decade in particular, the development of vaccine candidates for malaria has accelerated considerably and one candidate has recently reached the stage of a large-scale phase III trial while other potentially complementary approaches are showing increasing promise. In this short review, I focus primarily on pre-erythrocytic vaccines (figure 1) as they have shown more promise than vaccines against other stages of the life cycle, but I briefly survey a broader range of approaches. One contribution of 16 to a Discussion Meeting Issue ‘New vaccines for global health’
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.