Abstract

Peptide-based T cell vaccines targeting the conserved epitopes of influenza virus can provide cross-protection against distantly related strains, but they are generally not immunogenic. Foreign antigen-specific regulatory T (Treg) cells are induced under subimmunogenic conditions peripherally, although their development and role in vaccine-mediated antiviral immunity is unclear. Here, we demonstrated primary vaccination with peptides alone significantly induced antigen-specific Foxp3+ Treg cells, which were further expanded by repeated vaccination with unadjuvanted peptides. Certain adjuvants, including CpG, suppressed the induction and expansion of antigen-specific Treg cells by peptide vaccination. Interestingly, secondary influenza virus infection significantly increased the frequency of preexisting antigen-specific Treg cells, although primary infection barely induced them. Importantly, specific depletion of vaccine-induced antigen-specific Treg cells promoted influenza viral clearance, indicating their inhibitory role in vivo. Immunization with CpG-adjuvanted peptides by the subcutaneous prime-intranasal-boost strategy restricted the recruitment and accumulation of antigen-specific Treg cells in lung, and stimulated robust T cell immunity. Finally, subcutaneous prime-intranasal-boost immunization with CpG-adjuvanted peptides or whole-inactivated influenza vaccines protected mice from heterosubtypic influenza virus infection. In conclusion, antigen-specific Treg cells induced by peptide vaccines attenuate the antiviral immunity against influenza virus infection. CpG-adjuvanted peptide vaccines provide heterosubtypic influenza protection probably by inhibiting Treg development and enhancing T cell immunity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call