Abstract

One proposed factor contributing to the increased frequency of opioid overdose deaths is the emergence of novel synthetic opioids, including illicit fentanyl and fentanyl analogues. A treatment strategy currently under development to address the ongoing opioid crisis is immunopharmacotherapies or opioid-targeted vaccines. The present study determined the effectiveness and selectivity of a fentanyl-tetanus toxoid conjugate vaccine to alter the behavioral effects of fentanyl and a structurally dissimilar mu-opioid agonist oxycodone in male rhesus monkeys (n = 3–4). Fentanyl and oxycodone produced dose-dependent suppression of behavior in an assay of schedule-controlled responding and antinociception in an assay of thermal nociception (50 °C). Acute naltrexone (0.032 mg/kg) produced an approximate 10-fold potency shift for fentanyl to decrease operant responding. The fentanyl vaccine was administered at weeks 0, 2, 4, 9, 19, and 44 and fentanyl or oxycodone potencies in both behavioral assays were redetermined over the course of 49 weeks. The vaccine significantly and selectively shifted fentanyl potency at least 10-fold in both assays at several time points over the entire experimental period. Mid-point titer levels correlated with fentanyl antinociceptive potency shifts. Antibody affinity for fentanyl as measured by a competitive binding assay improved over time to approximately 3–4 nM. The fentanyl vaccine also increased fentanyl plasma levels approximately 6-fold consistent with the hypothesis that the vaccine sequesters fentanyl in the blood. Overall, these results support the continued development and evaluation of this fentanyl vaccine in humans to address the ongoing opioid crisis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call