Abstract

BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is responsible for the ongoing global COVID‐19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS‐CoV‐2 from entering human cells to replicate in.MethodsWe report the construction and in vitro and in vivo characterization of a SARS‐CoV‐2 subunit vaccine (PreS‐RBD) based on a structurally folded recombinant fusion protein consisting of two SARS‐CoV‐2 Spike protein receptor‐binding domains (RBD) fused to the N‐ and C‐terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other.ResultsPreS‐RBD, but not RBD alone, induced a robust and uniform RBD‐specific IgG response in rabbits. Currently available genetic SARS‐CoV‐2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS‐RBD vaccine induced RBD‐specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS‐CoV‐2 naive subject. PreS‐RBD‐specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS‐CoV‐2 variants, including the omicron variant of concern and the HBV receptor‐binding sites on PreS of currently known HBV genotypes. PreS‐RBD‐specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus‐neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS‐CoV‐2 vaccines or in COVID‐19 convalescent subjects.ConclusionThe PreS‐RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS‐CoV‐2 and HBV by stopping viral replication through the inhibition of cellular virus entry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.