Abstract

Current influenza vaccines should be improved by the addition of universal influenza vaccine antigens in order to protect against multiple virus strains. We used our self-assembling protein nanoparticles (SAPNs) to display the two conserved influenza antigens M2e and Helix C in their native oligomerization states. To further improve the immunogenicity of the SAPNs, we designed and incorporated the TLR5 agonist flagellin into the SAPNs to generate self-adjuvanted SAPNs. We demonstrate that addition of flagellin does not affect the ability of SAPNs to self-assemble and that they are able to stimulate TLR5 in a dose-dependent manner. Chickens vaccinated with the self-adjuvanted SAPNs induce significantly higher levels of antibodies than those with unadjuvanted SAPNs and show higher cross-neutralizing activity compared to a commercial inactivated virus vaccine. Upon immunization with self-adjuvanted SAPNs, mice were completely protected against a lethal challenge. Thus, we have generated a self-adjuvanted SAPN with a great potential as a universal influenza vaccine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call