Abstract

Respiratory syncytial virus (RSV) causes severe respiratory diseases in infants and young children. Inappropriate immunity to the virus can lead to disease enhancement upon subsequent infection. In this study, we have characterized the antiviral immunity elicited by the recombinant Semliki Forest virus (SFV) encoding the RSV fusion (F) and attachment (G) protein, and compared with that induced by the immune-stimulating complex (ISCOM)-incorporated FG proteins. Antiviral immunity against RSV elicited nasally or parentally by either of the immunogen having divergent profiles could reduce lung RSV titers upon challenge. However, resistance to RSV without disease enhancement was only observed in those vaccinated with SFV recombinants via nasal route. Presence of postvaccination pulmonary IFN-gamma response to the H-2K(d)-restricted T cell epitope (F(85-93); KYKNAVTEL) was found to be associated with absence of enhanced pulmonary disease and goblet cell hyperplasia as well as reduced Th2-cytokine expression. This result demonstrates that the SFV recombinants can result in enhanced clearance of RSV without enhancing the RSV-associated disease, and underlines the importance in priming pulmonary MHC class I-restricted T cells when RSV FG-based vaccines are used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.