Abstract

BackgroundRift Valley fever (RVF) is an arthropod-borne viral zoonosis. Rift Valley fever virus (RVFV) is an important biological threat with the potential to spread to new susceptible areas. In addition, it is a potential biowarfare agent.Methodology/Principal FindingsWe developed two potential vaccines, DNA plasmids and alphavirus replicons, expressing the Gn glycoprotein of RVFV alone or fused to three copies of complement protein, C3d. Each vaccine was administered to mice in an all DNA, all replicon, or a DNA prime/replicon boost strategy and both the humoral and cellular responses were assessed. DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited high titer neutralizing antibodies that were similar to titers elicited by the live-attenuated MP12 virus. Mice vaccinated with an inactivated form of MP12 did elicit high titer antibodies, but these antibodies were unable to neutralize RVFV infection. However, only vaccine strategies incorporating alphavirus replicons elicited cellular responses to Gn. Both vaccines strategies completely prevented weight loss and morbidity and protected against lethal RVFV challenge. Passive transfer of antisera from vaccinated mice into naïve mice showed that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited antibodies that protected mice as well as sera from mice immunized with MP12.Conclusion/SignificanceThese results show that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn administered alone or in a DNA prime/replicon boost strategy are effective RVFV vaccines. These vaccine strategies provide safer alternatives to using live-attenuated RVFV vaccines for human use.

Highlights

  • Rift Valley fever (RVF) is an arthropod-borne viral zoonosis

  • Rift Valley fever virus (RVFV) is an arthropod-borne phlebovirus associated with abortion storms, neonatal mortality in livestock and hemorrhagic fever or fatal encephalitis in a proportion of infected humans

  • We describe the use of DNA and alphavirus replicon based vaccination approaches to elicit a protective immune response against RVFV

Read more

Summary

Introduction

The causative agent Rift Valley fever virus (RVFV) belongs to the genus Phlebovirus of the family Bunyaviridae and was first discovered in the Rift Valley of Kenya in 1931 [1]. In 2006–2007, RVFV outbreaks were recorded in Kenya, Somalia and Tanzania that resulted in human infections and deaths [6]. The ability of RVFV to cause explosive ‘‘virgin soil’’ outbreaks in previously unaffected regions demonstrates the need for prophylactic measures for this significant veterinary and public health threat. Rift Valley fever virus (RVFV) is an important biological threat with the potential to spread to new susceptible areas.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call