Abstract
BackgroundEscherichia coli serogroup O157:H7 has emerged as an important zoonotic bacterial pathogen, causing a range of symptoms from self-limiting bloody diarrhea to severe hemorrhagic colitis and hemolytic-uremic syndrome in humans. Beef and dairy cattle are considered the most important animal reservoirs for this pathogen. One of the important virulence characteristics of E. coli O157:H7 is the eaeA gene encoding the 97 kDa surface protein intimin. Intimin is required for attachment and effacement during the interaction of enterohemorrhagic E. coli with human and bovine neonatal enterocytes. The present study was undertaken to test the hypothesis that an adaptive mucosal immune response directed against intimin will reduce or prevent enteric colonization and fecal shedding of E. coli O157:H7 in cattle.ResultsCattle were orally inoculated with either milk (control), milk with live attenuated Salmonella enterica serovar Dublin (vector), or milk with live attenuated recombinant S. Dublin expressing intimin (vaccinated) on days 0, 14 and 28. On day 98, all calves were challenged orally with E. coli O157:H7 to evaluate whether vaccination with the recombinant S. Dublin expressing intimin would reduce the level of E. coli O157:H7 fecal shedding.During the first 28 days, vaccinated calves shed both the vector strain and the intimin-expressing S. Dublin strain at a similar level. The vector strain was shed for a significantly longer period as compared to the level of recombinant vaccine strain. Calves that received the intimin-expressed vaccine ceased shedding S. Dublin from day 28 to day 63. All calves were challenged with E. coli O157:H7 on day 98 to determine the effect on fecal shedding of E. coli O157:H7. The amount of E. coli O157:H7 in feces was measured for 30 days post-challenge. We observed a transient clearance of E. coli O157:H7 from the feces in the vaccinated calves. The magnitude of fecal E. coli O157:H7 shedding did not correlate with the presence of intimin-specific fecal IgA.ConclusionOral vaccination with live attenuated recombinant S. Dublin expressing intimin reduced enteric colonization and fecal shedding of E. coli O157:H7. However, the transient clearance of E. coli O157:H7 was not associated with an enhanced IgA-mediated mucosal immune response.
Highlights
Escherichia coli serogroup O157:H7 has emerged as an important zoonotic bacterial pathogen, causing a range of symptoms from self-limiting bloody diarrhea to severe hemorrhagic colitis and hemolytic-uremic syndrome in humans
Construction of attenuated Salmonella strains expressing cloned intimin The eaeA gene including the upstream promoter region from E. coli O157:H7 86-24 was amplified by PCR from pEB310 and cloned into the low copy, RK2-based plasmid pRB3 [29]
Enterohemorrhagic Escherichia coli (EHEC) such as strain O157:H7 is an etiologic agent of acute enteric diseases in both humans and neonatal calves [32]; mature cattle are not affected
Summary
Escherichia coli serogroup O157:H7 has emerged as an important zoonotic bacterial pathogen, causing a range of symptoms from self-limiting bloody diarrhea to severe hemorrhagic colitis and hemolytic-uremic syndrome in humans. Beef and dairy cattle are considered the most important animal reservoirs for this pathogen. Transmission of E. coli O157:H7 by fecal contaminated water [13,14] is thought to be a major source of infection. Some person-to-person transmission has been reported [15,16], but the main source of human infection with E. coli O157:H7 is contamination of food products. Carcasses of non-colonized cattle have sometimes been found to contain E. coli O157:H7 in the abattoir, suggesting that crosscontamination during meat processing can be a major source of contamination of beef products and subsequent infection of humans [9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.