Abstract

The non-obese diabetic (NOD) mouse is a commonly used animal model for studying type 1 diabetes (T1D). The aims of our study were to explore the diabetes-preventive effect in NOD mice and the potential mechanisms of an optimized co-expression DNA vaccine containing GAD65 fragment gene with the IL-10 gene (SGAD65190-315 /IL-10). Female NOD mice at the age of 3-4weeks old were randomly divided into two groups and received intra-muscular injection of either blank pBudCE4.l vector (n = 34) or pBudCE4.l carrying the SGAD65190-315 /IL-10 (n = 32). The incidence of diabetes was monitored up to 30weeks of age. The severity of insulitis, apoptosis rate of β cells and relevant mechanisms were examined. Administration with SGAD65190-315 /IL-10 blocked the onset of autoimmune diabetes in NOD mice, significantly suppressed islet inflammation, inhibited the apoptosis of islet β cells, induced immune tolerance to autoantigen GAD65 and proinsulin and shifted the Th1/Th2 balance towards Th2. More importantly, the frequencies of CD4(+) CD25(+) Foxp3(+) regulatory T cells (Tregs) in the spleen and pancreatic lymph nodes in vaccine-immunized mice were significantly increased, and these Tregs were GAD65-reactive. In addition, Treg depletion by anti-CD25 mAb administration abolished the protective effects of SGAD65190-315 /IL-10 on diabetes and insulitis. Moreover, depletion of CD4(+) CD25(+) T cells using magnetic-activated cell sorting impaired the protective effect of SGAD65190-315 /IL-10 vaccination on adoptive transfer of diabetes. Our data suggested that SGAD65190-315 /IL-10 DNA vaccine had protective effects on T1D by upregulating autoantigen-reactive Tregs. Our findings may provide a novel preventive therapy for T1D. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call