Abstract

BackgroundDue to difficulties in eradicating porcine reproductive and respiratory syndrome (PRRS) linked to biosecurity challenges, transmission of the virus and the lack of efficient DIVA vaccines, successful control of PRRS requires a combination of strict management measures and vaccination of both sows and piglets. The present study aimed to assess the efficacy of a recently developed MLV vaccine (Ingelvac PRRSFLEX® EU) in piglets at 2 and 3-weeks of age in the presence of homologous maternally derived antibodies as the dams were vaccinated with the same vaccine strain (ReproCyc® PRRS EU).MethodsThe study was carried out on a Hungarian farrow to finish farm naturally infected with PRRSv. The study was designed as a blind, placebo controlled side by side trial. ORF5 sequence similarity of the vaccine strain and the resident field strain was 87.8 %. PRRS specific real-time quantitative PCR was performed from serum samples to measure both the viral load and the frequency of virus positive animals.ResultsAt the time of the natural infection observed in the control group at 10–12 weeks of age, the number of viraemic animals did not increase significantly in the vaccinated group. To understand the infection dynamics, positive PCR samples with low Ct values were sequenced (ORF5) and the data analysis indicated the circulation of wild type virus in both groups, however wild type virus was only found in non-vaccinated animals.ConclusionsOur data indicate that piglets vaccinated at as early as 2 weeks of age with Ingelvac PRRSFLEX® EU were protected both in terms of proportion of viraemic animals and viraemia levels. It has to be highlighted that these results were achieved in piglets with high levels of homologous maternally derived antibodies (MDA) at the time of vaccination.

Highlights

  • Due to difficulties in eradicating porcine reproductive and respiratory syndrome (PRRS) linked to biosecurity challenges, transmission of the virus and the lack of efficient DIVA vaccines, successful control of PRRS requires a combination of strict management measures and vaccination of both sows and piglets

  • Natural challenge To prove efficacy of a vaccine protection has to be proven by a challenge with virulent wild type PRRS virus

  • A virulent PRRS virus strain was circulating on the farm before initiation of the study as proven by virus isolation and subsequent sequencing over the past years

Read more

Summary

Introduction

Due to difficulties in eradicating porcine reproductive and respiratory syndrome (PRRS) linked to biosecurity challenges, transmission of the virus and the lack of efficient DIVA vaccines, successful control of PRRS requires a combination of strict management measures and vaccination of both sows and piglets. Porcine reproductive and respiratory syndrome (PRRS) is one of the most widespread, and economically devastating disease in swine industry. It is characterized by reproductive losses in breeding herds, increased mortality in newborn pigs and respiratory disorders in growing pigs [1, 2]. The relatively small, enveloped virus has a positive-sense single-stranded RNA genome of approximately 15.1 kb in length and encodes 10 ORFs [6,7,8]. In the last years new ORFs (TF) and −1/−2 programmed ribosomal frameshift signals were discovered in ORF1a, expressing two novel proteins, Balka et al Porcine Health Management (2016) 2:24

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call