Abstract
BackgroundMuch remains unknown about the effect of timing and prioritization of vaccination against pandemic (pH1N1) 2009 virus on health outcomes. We adapted a city-level contact network model to study different campaigns on influenza morbidity and mortality.MethodsWe modeled different distribution strategies initiated between July and November 2009 using a compartmental epidemic model that includes age structure and transmission network dynamics. The model represents the Greater Vancouver Regional District, a major North American city and surrounding suburbs with a population of 2 million, and is parameterized using data from the British Columbia Ministry of Health, published studies, and expert opinion. Outcomes are expressed as the number of infections and deaths averted due to vaccination.ResultsThe model output was consistent with provincial surveillance data. Assuming a basic reproduction number = 1.4, an 8-week vaccination campaign initiated 2 weeks before the epidemic onset reduced morbidity and mortality by 79-91% and 80-87%, respectively, compared to no vaccination. Prioritizing children and parents for vaccination may have reduced transmission compared to actual practice, but the mortality benefit of this strategy appears highly sensitive to campaign timing. Modeling the actual late October start date resulted in modest reductions in morbidity and mortality (13-25% and 16-20%, respectively) with little variation by prioritization scheme.ConclusionDelays in vaccine production due to technological or logistical barriers may reduce potential benefits of vaccination for pandemic influenza, and these temporal effects can outweigh any additional theoretical benefits from population targeting. Careful modeling may provide decision makers with estimates of these effects before the epidemic peak to guide production goals and inform policy. Integration of real-time surveillance data with mathematical models holds the promise of enabling public health planners to optimize the community benefits from proposed interventions before the pandemic peak.
Highlights
Much remains unknown about the effect of timing and prioritization of vaccination against pandemic 2009 virus on health outcomes
We developed a mathematical model of the transmission dynamics of the pandemic H1N1 (pH1N1) virus in the Greater Vancouver Regional District (GVRD) to quantify the impact of vaccination campaign timing in relation to the pandemic peak on the projected outcomes of these strategies
Baseline case without and with vaccination true pH1N1 infection incidence is difficult to determine, the recorded spread of pH1N1 through different age groups in the GVRD starting in the early autumn of 2009 was closely reproduced by the model using the baseline parameter values for pH1N1 (Figure 1)
Summary
Much remains unknown about the effect of timing and prioritization of vaccination against pandemic (pH1N1) 2009 virus on health outcomes. In British Columbia, second wave pandemic H1N1 (pH1N1) activity began slowly in early September 2009, coinciding with the reconvening of schools and universities; increased more abruptly in mid-October; peaked during the last week of October; and fully resolved by the end of the calendar year [4]. This stands in marked contrast with Canada’s usual influenza season, which typically spans November to April [5]. Regardless of the reasons underlying differential vulnerability to infection by age, this observation has important implications for the design and implementation of mitigation strategies for pH1N1 and future pandemic influenza viruses
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.