Abstract

An ab initiopseudopotential study of the monovacancy properties in bcc tungsten is presented. The formation and migration enthalpies are calculated for relaxed configurations using supercells containing up to 54 atomic sites, both in the electronic ground state and at finite electron temperature. The electronic contribution to the formation entropy --- usually neglected in point defect calculations --- is shown to be positive and equal to ${1.74k}_{B}$ at melting temperature. This large value is related to peaks in the electronic density of states just below the Fermi level due to states localized around the vacancy. The calculated values of the migration and formation enthalpies are found to be in excellent agreement with experiments at low temperatures, and their significant quadratic temperature dependence --- due to electronic excitations --- is shown to explain part of the experimentally observed temperature dependence of the migration enthalpy and self-diffusion activation energy. The tracer self-diffusion coefficient is calculated within the rate theory: the Arrhenius slope is in excellent agreement with experiments, and so are the absolute values provided that the electronic entropies are taken into account.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.