Abstract
Alkaline water electrolysis is regarded as a promising technology for sustainable energy conversion. Spinel oxides have attracted considerable attention as potential catalysts because of their diverse metal valence states. However, achieving the required current densities at low voltages is a challenge due to its limited active sites and suboptimal electron transport. In this study, we present a novel bifunctional catalyst composed of MnCo2O4.5 nanoneedles grown on NiS nanosheets for water electrolysis. Remarkably, MnCo2O4.5@NiS demonstrates exceptional catalytic activity, requiring 187 and 288 mV to achieve a current density of 100 mA cm−2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. The impressive performance of MnCo2O4.5@NiS is demonstrated by the lower value of voltage 1.44 V needed to deliver the current density of 10 mA cm−2, which outperformed the 1.66 V required for a commercial Pt/C||RuO2 system. Detailed structure analysis and density functional theory (DFT) calculations reveal that the MnCo2O4.5@NiS heterostructure enhances electron transfer at the interface, promotes the formation of oxygen vacancies and tunes the electronic structures of Mn and Co. These findings underscore the potential of MnCo2O4.5@NiS as an efficient and cost-effective electrocatalyst for hydrogen production.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.