Abstract

A vacancy-modulated self-rectifying resistive random access memory (ReRAM) with a Ti/NiOx/Al2O3/Pt structure is proposed in this study. Here, NiOx is used as a resistive switching layer, and Al2O3 is used as a tunnel barrier layer for producing self-rectifying behavior. The tunnel barrier thickness in the NiOx/Al2O3 interfacial region can be increased or decreased according to the movement of oxygen vacancies in the NiOx layer under positive or negative voltages, respectively, thereby leading to self-rectifying resistive switching behavior. As a result, the NiOx/Al2O3-based self-rectifying ReRAM exhibits a low operation current of ∼3 × 10−7 A, large ON/OFF ratio of ∼6 × 103, high rectification ratio of ∼5 × 102, long retention of 105 s, and forming-free and self-compliance characteristics, meeting the next generation ReRAM requirements. The Ti/NiOx/Al2O3/Pt-based self-rectifying structures can pave the way to develop high-density embedded memory applications in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call