Abstract
The first step towards the understanding and the modelling of the Fe–Cr alloy kinetic properties consists in estimating the migration energies related to the processes that drive the microstructure evolution. The vacancy’s migration barrier is expected to depend on the vacancy–migrating atom pair atomic environment as pointed out by Nguyen-Manh et al. or Bonny et al. In this paper, we address the issue of the dependence on the vacancy’s local atomic environment of both the vacancy migration energy and the configurational energy change ΔE that occurs when the vacancy jumps towards one of its nearest neighbour sites. A DFT approach is used to determine the ground state energy associated to a given configuration of the system. The results are interpreted in the light of the chromium–chromium and chromium–vacancy binding energies as well as the substitutional chromium atoms magnetic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.