Abstract

Motivated by recent scanning tunneling microscopy/spectroscopy experiments on probing single vacancies in black phosphorus, we present a theory for Fano antiresonances induced by coupling between vacancy states and edge states of zigzag phosphorene nanoribbons (zPNRs). To this end, in the first step, using the tight-binding Hamiltonian, we obtain an analytic solution on the lattice for the state associated to a single vacancy located in the bulk phosphorene which shows a highly anisotropic localization in real space. For a finite zigzag ribbon, in the absence of particle-hole symmetry, the localized state induced by vacancies can couple to the wave functions of the edge states which results in the formation of a new bound state. The energy of vacancy bound state lies inside the quasi-flat band composed of edge states when the vacancy locates sufficiently far away from the edge. Then, we employ the T-matrix Lippmann-Schwinger approach to obtain an explicit analytical expression for the scattering amplitude of the edge electrons of a zPNR by the presence of a single vacancy which shows a Fano resonance profile with a tunable dip. We demonstrate that varying the position of the vacancy produces substantially different effects on the resonance width, resonance energy position, and the asymmetry parameter of Fano line shape. Furthermore, the validity of the theoretical descriptions is verified numerically by using the Landauer approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.