Abstract

The chemical co-precipitation method, an effective approach in the synthesis of nanomaterials, was used to synthesize CuO nanoparticles (NPs). Structural and morphological modification of undoped and nitrogen (N) doped CuO nanoparticles were studied thoroughly using X-ray diffraction (XRD), FT-IR and field emission scanning electron microscope (FE SEM). Doping effect on defects was investigated using X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and photoluminescence (PL) spectroscopy. Thus, the effect of doping on crystallinity, crystallite size, strain induced in lattice, defects and electron-hole recombination rate were investigated. Optical band gap was calculated using Kubelka-Munk function from the diffuse reflectance spectra (DRS) obtained using ultraviolet visible (UV–Vis) spectroscopy. Finally, photocatalytic performance was studied from rhodamine B (Rh B) degradation and reaction kinetics were analyzed. Maximum degradation efficiency was obtained for 1.0 mol% N doped CuO NPs which also exhibited minimum band gap and lowest electron-hole recombination rate. For the optimum doping concentration, nitrogen was found to create oxygen vacancies while substituting oxygen in the lattice, and thus reduce electron-hole recombination rate and increase photocatalytic degradation rate effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.