Abstract

The electronic and structural properties of a single-walled carbon nanotube (SWNT) under mechanical deformation are studied using first-principles calculations based on the density functional theory. A force is applied over one particular C-atom with enough strength to break the chemical bonds between the atom and its nearest neighbors, leading to a final configuration represented by one tube with a vacancy and an isolated C-atom inside the tube. Our investigation demonstrates that there is a tendency that the first bond to break is the one most parallel possible to the tube axis and, after, the remaining two other bonds are broken. The analysis of the electronic charge densities, just before and after the bonds breaking, helps to elucidate how the vacancy is formed on an atom-by-atom basis. In particular, for tubes with a diameter around 11 angstroms, it is shown that the chemical bonds start to break only when the externally applied force is of the order of 14 nN and it is independent of the chirality. The formation energies for the vacancies created using this process are almost independent of the chirality, otherwise the bonds broken and the reconstruction are dependent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.