Abstract

Two-dimensional (2D) nanofluidic membranes have shown great promise in harvesting osmotic energy from the salinity difference between seawater and fresh water. However, the output power densities are strongly hampered by insufficient membrane permselectivity. Herein, we demonstrate that vacancy engineering is an effective strategy to enhance the permselectivity of 2D nanofluidic membranes to achieve high-efficiency osmotic energy generation. Phosphorus vacancies were facilely created on NbOPO4 (NbP) nanosheets, which remarkably enlarged their negative surface charge. As verified by both experimental and theoretical investigations, the vacancy-introduced NbP (V-NbP) exhibited fast transmembrane ion migration and high ionic selectivity originating from the improved electrostatic affinity of cations. When applied in a natural river water|seawater osmotic power generator, the macroscopic-scale V-NbP membrane delivered a record-high power density of 10.7 W m-2, far exceeding the commercial benchmark of 5.0 W m-2. This work endows the remarkable potential of vacancy engineering for 2D materials in nanofluidic energy devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.