Abstract

Conventionally, tetragonality in BaTiO3 powder is attributed to grain size, disregarding the role of Ba/Ti ratio. However, our study reveals a significant impact of Ba/Ti ratio on tetragonality in BaTiO3. With an increase in Ba/Ti ratio from 0.990 to 1.010, particle size remains around 200 nm. Tetragonality initially rises from 1.006 to a maximum of 1.0092 at Ba/Ti = 1.000, then decreases to 1.005. Lower tetragonality is associated with Ba or Ti vacancies, using density functional theory (DFT), we analyzed the electron density and lattice distinction in BaTiO3 powders. Both Ba and Ti vacancies affect lattice distortion, the Ti vacancies leading to more significant lattice expansion and lower tetragonality than Ba vacancies. Using this powder, we fabricated high-density BaTiO3 ceramics and multi-layer ceramics capacitors (MLCCs) with X7R temperature stability (−55 to 125 °C, ±15% coefficient) and excellent reliability. This strategy has broad implications for tetragonal BaTiO3 nanopowders and MLCCs development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.