Abstract
In this letter, the effect of vacancies generated by preirradiated laser on dopant diffusion and activation in preamorphized silicon substrate has been studied. Laser-induced melting in silicon was used to generate excess vacancies near the maximum melt depth before silicon substrate amorphization and subsequent boron implantation. We demonstrate that by matching the preirradiated laser melt depth with the implant amorphize depth, it can effectively reduce the silicon self-interstitials released from the end-of-range defect band. The results show great suppression in boron transient enhanced diffusion and significant removal of end-of-range defects. This is attributed to the recombination of laser-generated excess vacancies with preamorphizing induced free silicon interstitials at the end-of-range region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.