Abstract

In recent years, superconducting radio-frequency (SRF) cavities have been considered as candidates for qubits in quantum computing, showing longer photon lifetimes and, therefore, longer decoherence times of a cavity stored qubit compared to many other realizations. In modern particle accelerators, SRF cavities are the workhorse. Continuous research and development efforts are being undertaken to improve their properties, i.e., to increase the accelerating field and lower the surface resistance, which in turn increase the energy reach and duty cycle of accelerators. While some experimental milestones have been achieved, the mechanisms behind the still observed losses remain not fully understood. In this contribution we are going to show that a recently reported temperature treatment of Nb SRF cavities in the temperature range of 573--673 K, which reduces the residual surface resistance to unprecedented values, is linked to a reorganization of the niobium oxide and near-surface vacancy structure and that this reorganization can explain the observed improved performance in both applications, quantum computing and SRF cavities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call