Abstract

We apply positron annihilation spectroscopy to identify V(N)-Mg(Ga) complexes as native defects in Mg-doped GaN. These defects dissociate in postgrowth annealings at 500-800 degrees C. We conclude that V(N)-Mg(Ga) complexes contribute to the electrical compensation of Mg as well as the activation of p-type conductivity in the annealing. The observation of V(N)-Mg(Ga) complexes confirms that vacancy defects in either the N or Ga sublattice are abundant in GaN at any position of the Fermi level during growth, as predicted previously by theoretical calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call