Abstract

Vacancies exist throughout nature and determine the physical properties of materials. By manipulating the density and distribution of vacancies, it is possible to influence their physical properties such as band-gap, conductivity, magnetism, etc. This can generate exciting applications in the fields of water treatment, energy storage, and physical devices such as resistance-change memories. In this review, we focus on recent progress in vacancy engineering for the design of materials for energy harvesting applications. A brief discription of the concept of vacancies, the way to create and control them, as well as their fundamental properties, is first provided. Then, emphasis is placed on the strategies used to tailor vacancies for metal-insulator transitions, electronic structures, and introducing magnetism in non-magnetic materials. Finally, we present representative applications of different structures with vacancies as active electrode materials of lithium or sodium ion batteries, catalysts for water splitting, and hydrogen evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.