Abstract

AbstractUsing density functional theory, a series of calculations of structural and electronic properties of hydrogen vacancies in a fully hydrogenated boron nitride (fH‐BN) layer were conducted. By dehydrogenating the fH‐BN structure, B‐terminated vacancies can be created which induce complete spin polarization around the Fermi level, irrespective of the vacancy size. On the contrary, the fH‐BN structure with N‐terminated vacancies can be a small‐gap semiconductor, a typical spin gapless semiconductor, or a metal depending on the vacancy size. Utilizing such vacancy‐induced band gap and magnetism changes, possible applications in spintronics are proposed, and a special fH‐BN based quantum dot device is designed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.