Abstract
Edge-cloud collaborative video analytics is transforming the way data is being handled, processed, and transmitted from the ever-growing number of surveillance cameras around the world. To avoid wasting limited bandwidth on unrelated content transmission, existing video analytics solutions usually perform temporal or spatial filtering to realize aggressive compression of irrelevant pixels. However, most of them work in a context-agnostic way while being oblivious to the circumstances where the video content is happening and the context-dependent characteristics under the hood. In this work, we propose VaBUS, a real-time video analytics system that leverages the rich contextual information of surveillance cameras to reduce bandwidth consumption for semantic compression. As a task-oriented communication system, VaBUS dynamically maintains the background image of the video on the edge with minimal system overhead and sends only highly confident Region of Interests (RoIs) to the cloud through adaptive weighting and encoding. With a lightweight experience-driven learning module, VaBUS is able to achieve high offline inference accuracy even when network congestion occurs. Experimental results show that VaBUS reduces bandwidth consumption by 25.0%-76.9% while achieving 90.7% accuracy for both the object detection and human keypoint detection tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.