Abstract

An optical spectroscopy of an unusual fast transient V4641 Sgr constrains its mass to 8.7-11.7M_sun (9.6M_sun is the best fit value) and the distance to 7.4--12.3 kpc (Orosz et al. 2001). At this distance the peak flux of 12 Crab in the 2--12 keV energy band, measured by ASM/RXTE, implies the X-ray luminosity exceeding 2-3e39 erg/s, i.e. near or above the Eddington limit for a 9.6M_sun black hole. An optical photometry shows that at the peak of the optical outburst the visual magnitude increased by Delta m_V > 4.7^m relative to the quiescent level and reached m_V 3e41 erg/s > 300 L_Edd. We argue that the optical data strongly suggest presence of an extended envelope surrounding the source which absorbs primary X-rays flux and reemits it in optical and UV. The data also suggests that this envelope should be optically thin in UV, EUV and soft X-rays. The observed properties of V4641 Sgr at the peak of an optical flare are very similar to those of SS433. This envelope is likely the result of near or super Eddington rate of mass accretion onto the black hole and it vanishes during subsequent evolution of the source when apparent luminosity drops well below the Eddington value. Thus this transient source provides us direct proof of the dramatic change in the character of an accretion flow at the mass accretion rate near or above the critical Eddington value as predicted long time ago by the theoretical models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call