Abstract

Increasing the efficiency of charge transfer and separation efficiency of photogenerated carriers are still the main challenges in the field of semiconductor-based photocatalysts. Herein, we synthesized g-C3N4@V2C MXene photocatalyst by modifying g-C3N4 using V2C MXene. The prepared photocatalyst exhibited outstanding photocatalytic performance under visible light. The degradation efficiency of methyl orange by g-C3N4@V2C MXene photocatalyst was as high as 94.5%, which is 1.56 times higher than that by g-C3N4. This was attributed to the V2C MXene inhibiting the rapid recombination of photogenerated carriers and facilitating rapid transfer of photogenerated electrons (e−) from g-C3N4 to MXene. Moreover, g-C3N4@V2C MXene photocatalyst showed good cycling stability. The photocatalytic performance was higher than 85% after three cycles. Experiments to capture free radicals revealed that superoxide radicals (·O2−) are the main contributors to the photocatalytic activity. Thus, the proposed g-C3N4@V2C MXene photocatalyst is a promising visible-light catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.