Abstract

γδ T cells represent a small fraction of total T cells in the body and do not use classical polymorphic major histocompatibility complex‒loaded peptides for mounting an immune response. The importance of the effector and regulatory function of γδ T cells in infections, autoimmunity, and tumor models are well characterized. In this study, we investigated the mechanistic role of γδ T cells in costimulatory blockade‒induced transplantation tolerance. We used donor-specific transfusion and anti-CD40L treatment in C57BL/6 mice to induce tolerance to BALB/c skin allografts. We show that depletion of γδ T cells, specifically Vγ2+ γδ T cells, led to the acute rejection of skin allografts despite tolerogen treatment. Tolerogen treatment promoted CD39+Vγ2+ γδ T cells and suppressed IFN-γ‒producing Vγ2+ γδ T cells in the spleen and allografts. Vγ2+ γδ T cells isolated from tolerized mice suppress T helper type 1 cell differentiation. Adoptive transfer of these regulatory Vγ2+ γδ T cells prolonged the survival of allografts in an untreated recipient and Tcrδ‒/‒ mice. Together, our data show that the Vγ2+ subset promotes costimulatory blockade‒induced survival of skin allografts and that tolerogenic Vγ2+ T cells can be used as an adoptive cellular therapy to promote the survival of allografts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call