Abstract
V1−xWxO2 is known to be a reliable thermochromic material for multiple practical applications due to its insulator to metal transition temperature controlled by W dopping. In this paper, we present electrical and optical properties of V1−xWxO2 thin films synthesized by PLD technique. In this respect, the electrical resistance, the refractive index (n), and extinction coefficient (k) as a function of temperature from 25 to 80 °C and wavelength ranging from 500 to 3000 nm were obtained using conventional 4-probe resistance and ellipsometry methods. The direct and indirect bandgap values at different doping levels and temperatures have been calculated using n and k versus energy data and compared with thermally activated bandgap from electrical resistance. A decrease in direct and indirect bandgaps with temperature and wavelength was observed with doping and temperature. Comparison between thermal and optical bandgap demonstrates that activated thermal bandgap is only comparable with the lowest optical indirect bandgap.Graphical abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.