Abstract

In this work, details of stress time dependent transient <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {T}}$ </tex-math></inline-formula> shift in p-GaN Gate HEMTs are captured using a fast sweeping method. A minimum saturated <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {T}}$ </tex-math></inline-formula> shift ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Delta {V}_{\text {T}\_{}\text {Sat}}$ </tex-math></inline-formula> ) independent of stress time at about 4 V gate stress is observed, and electron tunneling process assisted by shallow traps in the AlGaN barrier is introduced as a likely mechanism to explain the phenomena. Under gate stress of 6 V and above, a stress time dependent over-recovery results in a negative <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${V}_{\text {T}}$ </tex-math></inline-formula> shift before the final recovery to the fresh state, confirming that hole de-trapping process needs to take a longer time than electron de-trapping process. In addition, under AC gate stress condition, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Delta {V}_{\text {T}\_{}\text {Sat}}$ </tex-math></inline-formula> shows an opposite trend in cases of low and high forward AC gate bias stresses, which is explained by the difference in the trapping rates of electrons and holes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call