Abstract

The internal elliptical hole defect in the Ti-6Al-4V titanium alloy sheet strongly affects the material mechanical properties during the bending process. In this study, the finite element method (FEM) is used to study the effect of internal hole on mechanical properties of the sheet subjected to the V-shaped bending. The fracture damage, the equivalent strain and the principal stress in the sheet with elliptical hole (the defect sheet) and the hole-free sheet (the perfect sheet) are analyzed contrastively under different punch speeds and radii. The results show that the load in the defect sheet and the perfect sheet has different trends during the bending process. Compared to the perfect sheet, both the damage and the equivalent strain in the defect sheet obviously increase, and the distribution of the principal stress in the bending zone of the defect sheet has a significant change. The hole causes the different evolution of the maximum damage, the equivalent strain, and the maximum tensile and compressive stresses with the increase of punch speed and radius for the defect and perfect sheets. The current results serve a feasible approach to predicting the fracture of the sheet with internal hole during the V-shaped bending process, and provide a guidance for the V-bending experiments of the defect and perfect sheets in the subsequent work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.