Abstract

Development in VLSI design allows multi- to many-cores to be integrated on a single microprocessor chip. This increase in the core count per chip makes it more critical to design an efficient memory sub-system especially the shared last level cache (LLC). The efficient utilization of the LLC is a dominant factor to achieve the best microprocessor throughput. Conventional set-associative cache cannot cope with the new access pattern of the cache blocks in the multi-core processors. In this paper, the authors propose a new design for LLC in multi-core processor. The proposed v-set cache design allows an adaptive and dynamic utilization of the cache blocks. Unlike lately proposed design such as v-way caches, v-set cache design limits the serial access of cache blocks. In our paper, we thoroughly study the proposed design including area and power consumption as well as the performance and throughput. On eight-core microprocessor, the proposed v-set cache design can achieve a maximum speedup of 25% and 12% and an average speedup of 16% and 6% compared to conventional n-way and v-way cache designs, respectively. The area overhead of v-set does not exceed 7% compared to n-way cache.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call