Abstract

Problems which deal with the stability of bodies in equilibrium under stress are so distinct from the ordinary applications of the theory of elasticity that it is legitimate to regard them as forming a special branch of the subject. In every other case we are concerned with the integration of certain differential equations, fundamentally the same for all problems, and the satisfaction of certain boundary conditions; and by a theorem due to Kiechiioff we are entitled to assume that any solution which we may discover is unique. In these problems we are confronted with the possibility of two or more configurations of equilibrium , and we have to determine the conditions which must be satisfied in order that the equilibrium of any given configuration may be stable. The development of both branches has proceeded upon similar lines. That is to say, the earliest discussions were concerned with the solution of isolated examples rather than with the formulation of general ideas. In the case of elastic stability, a comprehensive theory was not propounded until the problem of the straight strut had been investigated by Euler, that of the circular ring under radial pressure by M. Lévy and G. H. Halphen, and A. G. Greenhill had discussed the stability of a straight rod in equilibrium under its own weight, under twisting couples, and when rotating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.