Abstract

The purpose of this study was to examine O(2) uptake (Vo(2)) on-kinetics when the spontaneous blood flow (and therefore O(2) delivery) on-response was slowed by 25 and 50 s. The isolated gastrocnemius muscle complex (GS) in situ was studied in six anesthetized dogs during transitions from rest to a submaximal metabolic rate (≈50-70% of peak Vo(2)). Four trials were performed: 1) a pretrial in which resting and steady-state blood flows were established, 2) a control trial in which the blood flow on-kinetics mean response time (MRT) was set at 20 s (CT20), 3) an experimental trial in which the blood flow on-kinetics MRT was set at 45 s (EX45), and 4) an experimental trial in which the blood flow on-kinetics MRT was set at 70 s (EX70). Slowing O(2) delivery via slowing blood flow on-kinetics resulted in a linear slowing of the Vo(2) on-kinetics response (R = 0.96). Average MRT values for CT20, EX45, and EX70 Vo(2) on-kinetics were (means ± SD) 17 ± 2, 23 ± 4, and 26 ± 3 s, respectively (P < 0.05 among all). During these transitions, slowing blood flow resulted in greater muscle deoxygenation (as indicated by near-infrared spectroscopy), suggesting that lower intracellular Po(2) values were reached. In this oxidative muscle, Vo(2) and O(2) delivery were closely matched during the transition period from rest to steady-state contractions. In conjunction with our previous work showing that speeding O(2) delivery did not alter Vo(2) on-kinetics under similar conditions, it appears that spontaneously perfused skeletal muscle operates at the nexus of sufficient and insufficient O(2) delivery in the transition from rest to contractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call