Abstract

Ten-period InAlN/GaN distributed Bragg reflectors are examined by aberration corrected scanning transmission electron microscopy and by valence electron energy-loss spectroscopy (VEELS) with sub-nanometric spatial resolution and sub-eV energy dispersion. Deconvolution and peak subtraction methods, implemented in Matlab routines, are applied to the low loss region of the obtained VEEL spectra to retrieve information about the band gap energy and chemical composition, whereas a Kramers-Kronig transformation is used to retrieve the complex dielectric function of the examined material. The VEEL measurements reveal significant compositional variations in InAlN layers and show a ∼2nm thick InAlN layer with high indium content at each GaN/InAlN interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.