Abstract
The abundances of V, Cr, and Mn inferred for the mantles of the Earth and Moon decrease in that order and are similar, but are distinct from those inferred for the mantles of the Eucrite Parent Body (EPB) and Shergottite Parent Body (SPB). This similarity between Earth and Moon has been used to suggest that the Moon is derived substantially or entirely from Earth mantle material following terrestrial core formation. To test this hypothesis, we have determined the partitioning of V, Cr, and Mn between solid iron metal, S-rich metallic liquid, and synthetic basaltic silicate liquid at 1260°C and one bar pressure. The sequence of compatibility in the metallic phases is Cr > V > Mn at “high” oxygen fugacity (just below the iron-wüstite buffer) and V > Cr > Mn at low oxygen fugacities. Solubilities in liquid metal always exceed solubilities in solid metal. These partition coefficients suggest that the abundances of V, Cr, and Mn do not reflect core formation in the Earth. Rather, they are consistent with the relative volatilities of these elements. The similarity in the depletion patterns of V, Cr, and Mn inferred for the mantles of the Earth and Moon is a necessary, but not sufficient, condition for the Moon to have been derived wholly or in part from the Earth's mantle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.