Abstract

The vacuolar-type H+ -ATPase (V-ATPase) is an ATP-dependent proton pump, which regulates various cellular processes. To date, most functional studies on V-ATPases of insects have focused on subunits of the V1 complex, and there is little information on the VO genes. In this study, two cDNA sequences of LmV-ATPase a were identified in Locusta migratoria. RT-qPCR analysis revealed that LmV-ATPase a1 and LmV-ATPase a2 are differentially expressed in various tissues and developmental stages. Injection of dsRNA for the common region of LmV-ATPase a1 and LmV-ATPase a2 into third-instar nymphs resulted in a significant suppression of LmV-ATPase a. The injected nymphs ceased feeding, lost body weight and finally died at a mortality of 98.6%. Furthermore, aberrations of midgut epithelial cells, the accumulation of electron-lucent vesicles in the cytoplasm, and a partially damaged brush border were observed in dsLmV-ATPase a-injected nymphs using transmission electron microscopy. Especially, the mRNA level of wingles, and notch genes were dramatically down-regulated in the dsLmV-ATPase a-injected nymphs. Taken together, our results suggest that LmV-ATPase a is required for survival and midgut development of L. migratoria. Hence, this gene could be a good target for RNAi-based control against locusts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call