Abstract
Microwave generation and modulation over the V- and W-bands are investigated using a semiconductor laser subject to both comb-like optical injection and direct modulation. The former not only excites period-one (P1) nonlinear dynamics for tunable microwave generation but also improves the stability and purity of such generated microwaves. The latter upconverts data onto the generated microwaves by superimposing the data effectively only onto the lower oscillation sideband of the P1 dynamics, which prevents the data from dispersion-induced degradation over fiber distribution. As a result, microwaves that are continuously tunable from 40 to 110 GHz with a 3-dB linewidth of less than 1 Hz and with phase noise better than -95dBc/Hz at 10-kHz offset are generated. A bit-error ratio better than the forward error correction limit, 3.8×10-3, is achieved for 12-Gb/s 16-quadrature amplitude modulation data after 25-km fiber distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.