Abstract
Hypoxemia in bacterial sepsis develops by mechanisms which are incompletely understood. In this study, we measured pulmonary gas exchange in eight baboons to determine the causes of hypoxemia after infusion of live Escherichia coli (1 × 10 10 CFU/kg) followed by resuscitation with intravenous fluid. V̇ a/Q̇ distributions were measured periodically using the multiple inert gas elimination technique until death or for a maximum of 42 h. After E. coli infusion, dispersion of perfusion (logSDq) increased rapidly and a transient rise in dead space was observed at 6 h coinciding with systemic hypotension and acidosis. The intrapulmonary shunt developed later and reached 27 ± 6% at 24 h. Pa o 2 began to decrease at 12 h and correlated with increases in intrapulmonary shunt and logSDq. There was no evidence of diffusion limitation. Lung edema was mild despite aggressive fluid resuscitation. Morphometric analysis of postmortem lungs revealed dramatic intravascular accumulation of granulocytes. There were increases in arithmetic mean thicknesses of epithelium and interstitium. These data indicate that gram negative sepsis with fluid resuscitation causes progressive hypoxemia, primarily due to the development of intrapulmonary shunt and very low V̇ a/Q̇ regions in the lung. The V̇ a/Q̇ abnormalities occur early and likely reflect ongoing cellular responses in pulmonary vasculature and smaller airways in sepsis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.