Abstract
Metrics are used to measure the distance, similarity, or dissimilarity between two points in a metric space. Metric learning algorithms perform the finding task of data points that are closest or furthest to a query point in m-dimensional metric space. Some metrics take into account the assumption that the whole dimensions are of equal importance, and vice versa. However, this assumption does not incorporate a number of real-world problems that classification algorithms tackle. In this research, the existing information gain, the information gain ratio, and some well-known conventional metrics have been compared by each other. The 1-Nearest Neighbor algorithm taking these metrics as its meta-parameter has been applied to forty-nine benchmark datasets. Only the accuracy rate criterion has been employed in order to quantify the performance of the metrics. The experimental results show that each metric is successful on datasets corresponding to its own domain. In other words, each metric is favorable on datasets overlapping its own assumption. In addition, there also exists incompleteness in classification tasks for metrics just like there is for learning algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Afyon Kocatepe University Journal of Sciences and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.