Abstract

In this paper, we propose an efficient frequent-pattern-based outlier detection method, namely, UWFP-Outlier, for identifying the implicit outliers from uncertain weighted data streams. For reducing the time cost of the UWFP-Outlier method, in the weighted frequent pattern mining phase, we introduce the concepts of the maximal weight and maximal probability to form a compact anti-monotonic property, thereby reducing the scale of potential extensible patterns. For accurately detecting the outliers, in the outlier detection phase, we design two deviation indices to measure the deviation degree of each transaction in the uncertain weighted data streams by considering more factors that may influence its deviation degree; then, the transactions which have large deviation degrees are judged as outliers. The experimental results indicate that the proposed UWFP-Outlier method can accurately detect the outliers from uncertain weighted data streams with a lower time cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.