Abstract

A major challenge in ultra-wide-band (UWB) signal processing is the requirement for very high sampling rate. The recently emerging compressed sensing (CS) theory makes processing UWB signal at a low sampling rate possible if the signal has a sparse representation in a certain space. Based on the CS theory, a system for sampling UWB echo signal at a rate much lower than Nyquist rate and performing signal detection is proposed in this paper. First, an approach of constructing basis functions according to matching rules is proposed to achieve sparse signal representation because the sparse representation of signal is the most important precondition for the use of CS theory. Second, based on the matching basis functions and using analog-to-information converter, a UWB signal detection system is designed in the framework of the CS theory. With this system, a UWB signal, such as a linear frequency-modulated signal in radar system, can be sampled at about 10% of Nyquist rate, but still can be reconstructed and detected with overwhelming probability. The simulation results show that the proposed method is effective for sampling and detecting UWB signal directly even without a very high-frequency analog-to-digital converter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.