Abstract

Microplastic (MP) particles are ubiquitous in aquatic environments. There they interact with naturally occurring particles and colloids. Processes like aggregation affect not only MP surface properties but also removal from the water column. Additionally, MP particles are exposed to UV radiation, which alters their surface properties and thus their interactions with environmental particles. We studied heteroaggregation and subsequent sedimentation of 1 µm polystyrene (PS) (pristine and UV-weathered) with ferrihydrite, an iron (oxy)hydroxide commonly found in nature. Pristine PS particles were highly negatively charged at pH 3-11. After reaction with ferrihydrite, at neutral pH values, strong heteroaggregation with ferrihydrite caused sedimentation of almost all PS particles. At acidic pH, negatively charged PS particles were coated with positively charged ferrihydrite leading to charge reversal. UV-weathering of PS led to lower negative surface charge, and particle size decreased with increasing weathering time. These changes in surface properties and particle size resulted in differences in aggregation behavior with ferrihydrite. With increasing weathering time, the isoelectric point (pHIEP) of samples with PS and ferrihydrite shifted from slightly alkaline pH to pH 3-4. Furthermore, we observed aggregation and subsequent sedimentation of weathered PS and ferrihydrite for larger pH ranges (3-7) compared to pristine PS. We attribute this to the fact that zeta potential values of the mixture of weathered PS and ferrihydrite were rather low in this pH range. Thus, particle repulsion was low, leading to aggregation. Overall, UV-weathering but also interactions of MP with environmental particles cause changes of MP surface properties, which influence its environmental behavior in water and contribute to removal from the water column.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.