Abstract

AbstractA charge‐transfer complex of 2,5‐dimethyl‐N,N′‐dicyanoquinonediimine (DM) with silver (crystalline Ag(DM)2, defined as α) is irreversibly transformed by UV‐vis illumination. Depending on the illumination conditions, three new types of solids (defined as γ, δ, and ϵ) with different structural and physical properties are obtained and examined by a variety of analytical techniques, including solid‐state, high‐resolution, cross‐polarization magic angle spinning (CP‐MAS) 13C NMR, elemental analysis (EA), mass spectrometry (MS), X‐ray absorption fine structure (XAFS), and powder X‐ray diffraction (XRD). The CP‐MAS, EA, MS, and XAFS results indicate that compound γ is a glass state of Ag(DM)2. The transformation from crystalline (α) to amorphous (γ) solid Ag(DM)2 is an irreversible exothermic glass transition (glass‐transition temperature 155.2 °C; ΔH = –126.8 kJ mol–1), which implies that the glass form is thermodynamically more stable than the crystalline form. Compound δ (Ag(DM)1.5) consists of silver nanoparticles (diameter (7 ± 2) nm ) dispersed in a glassy matrix of neutral DM molecules. The N–CN–Ag coordination bonds of the α form are not maintained in the δ form. Decomposition of α by intense illumination results in a white solid (ϵ), identified as being composed of silver nanoparticles (diameter (60 ± 10) nm). Physical and spectroscopic (XAFS) measurements, together with XRD analysis, indicate that the silver nanoparticles in both δ and ϵ are crystalline with lattice parameters similar to bulk silver; however, the magnetic susceptibilities differ from bulk silver.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.