Abstract
2-Chloropyridine and Iodine monochloride form 1:1 n→ σ∗ charge transfer complex which is confirmed by Benesi Hildebrand plot using UV-vis spectroscopy. Multiple Linear Regression Technique (MLRT) shows that 2-Chloropyridine-ICl complex is susceptible to medium effect in reference to different solvent parameters, at both the bulk and molecular levels. Dielectric constant (∈), refractive index (n), Hansen parameter, Catalan parameter and Kamlet’s π∗ values give good linear fit equations between experimental and calculated CT bands with R2 values as high as 1. Polarizability effect on the CT band is examined using Buckingham and Lippert Mataga equation. Formation constant of the complex in different mediais found to be linearly dependent on Hansen solubility parameter. Computational analysis defends well the blue shift in polar medium observed for 2-Chloropyridine-ICl. NBO, NRT, and QTAIM analyses explain a shift from ionic character to covalent character in polar medium. It emphasises a stronger donor acceptor interaction in polar medium and thereby explains the experimentally observed blue shift. A logarithmic relation between the bond lengths of the bridging atoms and dielectric constant is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.