Abstract

The ultraviolet-visible absorption spectrum of camptothecin (CPT) has been been recorded in aqueous solution at pH 5.3, where the equilibrium among the different CPT forms is shifted toward the lactonic one. Time-dependent density functional theory (TD-DFT) computations lead to a remarkable reproduction of the experimental spectrum only upon addition of explicit water molecules in interaction with specific moieties of the camptothecin molecule. Molecular dynamics (MD) simulations enforcing boundary periodic conditions for CPT embedded with 865 water molecules, with a force field derived from DFT computations, show that the experimental spectrum is due to the contributions of CPT molecules with different solvation patterns. A similar solvent effect is observed for several CPT derivatives, including the clinically relevant SN-38 and topotecan drugs. The quantitative agreement between TD-DFT/MD computations and experimental data allow us to identify specific spectroscopic signatures diagnostic of the drug environment and to develop procedures that can be used to monitor the drug-DNA/protein interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.